Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry
نویسندگان
چکیده
Myeloperoxidase (MPO) is a heme-containing enzyme released from activated leukocytes into the extracellular space during inflammation. Its main function is the production of hypohalous acids that are potent oxidants. MPO can also modulate cell signaling and inflammatory responses independently of its enzymatic activity. Because MPO is regarded as an important risk factor for cardiovascular diseases associated with increased platelet activity, we studied the effects of MPO on human platelet functional properties. Laser scanning confocal microscopy was used to reveal carbohydrate-independent MPO binding to human platelet membrane. Adding MPO to platelets did not activate their aggregation under basal conditions (without agonist). In contrast, MPO augmented agonist-induced platelet aggregation, which was not prevented by MPO enzymatic activity inhibitors. It was found that exposure of platelets to MPO leads to actin cytoskeleton reorganization and an increase in their elasticity. Furthermore, MPO evoked a rise in cytosolic Ca(2+) through enhancement of store-operated Ca(2+) entry (SOCE). Together, these findings indicate that MPO is not a direct agonist but rather a mediator that binds to human platelets, induces actin cytoskeleton reorganization and affects the mechanical stiffness of human platelets, resulting in potentiating SOCE and agonist-induced human platelet aggregation. Therefore, an increased activity of platelets in vascular disease can, at least partly, be provided by MPO elevated concentrations.
منابع مشابه
A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets.
Store-operated Ca2+ entry (SOCE) is a major mechanism for Ca2+ influx in platelets and other cells. De novo conformational coupling between elements in the plasma membrane and Ca2+ stores, where the actin cytoskeleton plays an important regulatory role, has been proposed as the most likely mechanism to activate SOCE in platelets. Here we have examined for the first time changes in platelet F-ac...
متن کاملCyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and ...
متن کاملEffect of Rho-associated kinase inhibition on actin cytoskeleton structure and calcium response in glioma C6 cells.
The role of actin cytoskeleton functional state in glioma C6 cell morphology and calcium signaling was investigated through modification of myosin II activity by blocking Rho-associated kinase with the specific inhibitor Y-27632. Treatment of glioma C6 cells with ROCK inhibitor resulted in actin cytoskeleton reorganization and also in the changed shape and distribution of mitochondria. Changes ...
متن کاملCytoskeleton Reorganization as an Alternative Mechanism of Store-Operated Calcium Entry Control in Neuroendocrine-Differentiated Cells
Neuroendocrine differentiation (NED) is a hallmark of advanced androgen-independent prostate cancer, for which no successful therapy exists. NED tumour cells escape apoptotic cell death by alterations of Ca(2+) homeostasis where the store-operated Ca(2+) entry (SOCE) is known to be a key event. We have previously shown that the downregulation of Orai1 protein representing the major molecular co...
متن کاملChemico-genetic identification of drebrin as a regulator of calcium responses.
Store-operated calcium channels are plasma membrane Ca(2+) channels that are activated by depletion of intracellular Ca(2+) stores, resulting in an increase in intracellular Ca(2+) concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca(2+) concentration serve as signals that activate a number of cellular processes, however, little is known abo...
متن کامل